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Web Application Penetration Testing with Al

@ Main Contributions
® Identifying and examining the state of the art in this area
® Discussing prevailing trends and challenges
® Predicting future research directions

@ Secondary Contributions
® Address the scarcity of recent literature analyses

® To the best of our knowledge, we are the firsts to include papers from incipient research directions
(e.g., LLMs, Adversarial Attacks)
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@ Web applications are a target
® Artificial Intelligence new trends
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Types of Penetration Tests and Related Work

Threat model: White-box vs Grey-box vs Black-box

Focus: Web App vs Software pentesting
Objective: Pentesting/Vulnerability Detection vs Vulnerability Prediction
Technique: Static vs Dynamic

AT
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Bassi and Singh [1] 2023 Software Vulnerability Prediction 77 2007-2022
Saber et al. [2] 2023 General Pentesting Undefined Undefined
Harzevili et al. [3] 2023 Software Vulnerability Prediction 67 2011-2022
McKinnel etal. [4] 2019 General Pentesting 31 2002-2017
Our Survey 2024 Pentesting Web Apps 49 2013-2024
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Research Questions &5 .,

RQ1: What Al methodologies are predominantly used in web applications penetration
testing, and for what specific purposes?;

RQ2: How do Al-driven web application pentesting tools compare in effectiveness and
efficiency to traditional methods?;

RQ3: What are the recognized limitations and challenges for Al-driven web ap-
plications pentesting tools as identified in the literature?.

Our study focuses on cybersecurity research with an offensive approach
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Selection Criteria

® Inclusion Criteria
® Employ Al methods
® To find Web Applications vulnerabilites
® Empirical evaluation
| Peer-reviewed

® Exclusion criteria
® Pentesting other domains
® Unpublished work/Preprints
® Non-empirical (e.g., other reviews)
® Non-English

Al: Artificial Intelligence
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Visual overview

Literatar Inclusion +
( Search Query ]—»[ crature ]—»[Search Results Exclusion [ Read Paper 49 -
Resources Criteria

Apply criteria

’ Google Scholar

Apply criteria

[[Abstract: machine ) AC l\flE[E)‘E 'XII)IETE according (o ;Cl;"l?ﬁdgft
learning] OR [Title: 1gital Library _

machine lbearningjj AND Science Direct aﬂiﬁ;ﬁ;ﬁ

[[Abstract: vulnerability] Scopus

OR [Tide: vulnerability]]
AND [[Abstract: web
application] OR [Title:

web application]]
AND |E-Publication

Date: (01/01/2013

TO 12/31/2023)]
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Review Results |

® 29in conferences, 20 In journals
@ Papers and pentesting stages

[}
o

/7. Information Gathering

mveStlgated over ’Fhe years 8| N Scanning and Enumeration
® Top stage: Scanning and EEEEE Exploit
enumeration 6 Eess Post-Exploit

® More exploit papers as Al matures

N° of Publications

® Dynamic analysis preferred *
® Exploitation + dynamic analysis 2
@ Top tests: injections )

® SQLiand XSS

Al: Artificial Intelligence XSS: Cross-site Scripting
SQLi: Sequel injection
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a ML and NNs more frequent
® E.g.LR, SVMs, RF, MLP

@ RL least used
® Adaptive methods still inmmature

@ Recent NLP increase
® E.g. Transformers

ML: Machine Learning
NNs: Neural Networks

LR: Logistic Regression
SVMs: Support Vector Machines
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RF: Random Forest
MLP: Multi-Layer Perceptron

NLP: Natural Language Processing
RL: Reinforcement Learning
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Review Results Il
" Datasets
® Supervised methods : i
rely on annotated Various test cases https://tinyurl.com/wh94b8t
corpora Synthetic test cases written in PHP https://github.com/stivalet/PHP-
® Static analysis tools Vulnerability-test-suite
IevO(Ierage source Archive of websites vulnerable to XSS  http://www.xssed.com/
code _ . . :
® Manual labeling is HTTP requests from popular websites  https://github.com/alviser/mitch
usually required Attack grammars for fuzzing https://github.com/hongliangliang/gptf
® Target Web Apps s
® Testing XSS payloads https://qithub.com/payloadbox/xss-
environments help to payload-list
stay ethical. Damn Vulnerable Web Application https://github.com/digininja/DVWA
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Additional Insights

@ Other tools used
® Data mining
® E.g., Weka
® Traditional pentesting software
® E.g., Pixy, ZAP, Wapiti, Burp Suite
@ Academic research compare
solutions against commercial
tools.

@ Open-sourcing yields more
citations
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| 10* 46 2019 Scanmng/Enumeration b SVM, DT, REF, GBDT, LR

128] 10 2014 Scanning/Enumeralion 5 RE, NB, 148

133] b3 20149 Scanning/Enumeration S+RL SVM., MLP, DOQN, LSTM

117] k] 20149 Scanning/Enumeration 5 SGBT

153] 2 2014 Scannming/Enumeralion 5+U SWVM. PAA

135]* 36 2020 Explot 5+U Translormers

[ 18] 20 2020 Scanning/Enumeration S5+U LSTM

[ 70]* 5 2020 Exploit 5 GAN

18] 4 2020 Information Gatherning 5 BigARTM

[149] 2 2020 Scanning/Enumeration b DT, BRF, MLP, NB, KNN, LE, 5¥VM

|45]* 27 2021 Scanmng/Enumeration 5 DMNN

151 6 2021 Exploit L Autoencoder

137] 3 2021 Scanning/Enumeration 5 BPNN, GA

[48] 2 2021 Exploit 5+U SVM, PAA, DAA

|32]F 13 2022 Exploitl RL PPO, DON, A2C

131] 12 2022 Scannmng/Enumeralion 5 CNN

[449] 11 2022 Scanning/Enumeration b FsM

143] 9 2022 Scanning/Enumeration 5 HMM

139] 4 2022 Scanning/Enumeration 5 DT, KNN, RF, LE, 5VM, LSTM, BILSTM,
GRU, BiGRU

167] 2 2022 Scanning/Enumeration 5 LSTM, RE. GBE, LR

175] 1 2022 Scanning/Enumeration 5 Gated RNN

147] 0 2022 Scanning/Enumeration 5 CNN. ENN, LETM, BiLSTM

| 38| 0 2022 Scanning/Enumeration b DT, WM, NB, ET. RE, JRip

| 36] 7 2023 Scanning/Enumeration 5 Ciraph CNN, RNN

12] 2 2023 Scanning/Enumeralion 5 Translormers

|68] 0 2023 Exploit 5 NB, LR, DT, RE, XGBoost

174] 0 2023 Scanning/Enumeration 5 ASTNN, LSTM. SVM., ASTE

173] 0 2023 Exploit RL DDON

| 34* 0 2023 Exploitl U+RL Translormers, MDP

[63]* 0 2023 Exploit RL ()-Leaming

126] 0 2023 Exploit u RE, Adaboost, SVM, RNN

112] 0 2023 Exploit S5+RL GAN

KASTEL Security Lab Energy



Introduction Literature Review Review Results Conclusion

AT

Answering Research Questions

8 RQI1: What Al methodologies are predominantly used in web applications
penetration testing, and for what specific purposes?

ML stands as the primary area of focus, complemented by NNs, NLP and RL

In scanning and enumeration stages: SVM and RF are popular choices for classification tasks

In the exploit stage, GAN and HMM are notable for their specialized applications

0
0
0
® Inthe cases of Post-Exploit and Information Gathering: lack of focus
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Answering Research Questions

2 RQ2: How do Al-driven web application pentesting tools compare in effectiveness
and efficiency to traditional methods?

® Al-driven web application pentesting tools show promise in effectiveness and efficiency

® Generally, the absence of standard baselines for evaluation and the diversity of approaches
complicates making equitable comparisons
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Answering Research Questions

2 RQ2: How do Al-driven web application pentesting tools compare in effectiveness
and efficiency to traditional methods?
® Al-driven web application pentesting tools show promise in effectiveness and efficiency

® Generally, the absence of standard baselines for evaluation and the diversity of approaches
complicates making equitable comparisons

8 RQ3: What are the recognized limitations and challenges for Al-driven web
applications pentesting tools as identified in the literature?
® Al methods, especially supervised ML, heavily rely on high-quality annotated data
® Thereis a need for common environments to evaluate new Al-based approaches
® More open science and reproducible research needed
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Future Research Directions

@ Research Gaps

® We anticipate that future studies will focus on underrepresented OWASP vulnerabilities, such as
cryptographic failures and Server-Side Request Forgery (SSRF)

@ Large Language Models (LLMs)

® Papers already under submission on this topic (e.g., PentestGPT)

@ Adversarial Attacks
® Al models can get mislead on purpose by adversaries
u Explainability

® Making the decision-making processes of learning-based systems transparent and
understandable to humans

@ Data Privacy

® Prioritise the privacy of client data, developing methods that safeguard sensitive information
during and after security assessments
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Conclusion (o et S ety
® ,While Al-based tools have proven to be more efficient than traditional approaches,

they still face significant challenges, such as the need for enriched data and more
realistic testing environments”

Questions?

Thank you for your attention !

Contact; sanchez@kit.edu
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